Esercizi
[1BT] Prerequisiti:[18F], [1BF].Sia \(I⊂ ℝ\) un intervallo aperto. Sia \(g:I→ℝ\) Riemann integrabile su ogni intervallo chiuso e limitato e contenuto in \(I\). Presi \(x,y\in {\mathbb {R}}\) con \(x≠ y\), sia
\[ R(x,y )=\frac 1{y-x}∫_ x^ y g(s)\, {\mathbb {d}}s \](con la usuale convenzione che \(∫_ x^ y g(s)\, {\mathbb {d}}s=-∫_ y^ x g(s)\, {\mathbb {d}}s\), in modo che \(R(x,y)=R(y,x)\)). Se \(g\) è monotona, si mostri che \(R(x,y)\) è monotona in ciascuna variabile. Se \(g\) è continua e \(R(x,y)\) è monotona in ciascuna variabile, si mostri che \(g\) è monotona.
1