Exercises
[1DW]Difficulty:*.Let \(f_ 0,f_ 1:βββ\), \(f_ 0,f_ 1β C^β\) with \(f'_ 0,f'_ 1{\gt}0\) and \(f_ 1(1){\gt}f_ 0(0)\): then one can interpolate with a function \(fβ C^β\) that satisfies
\begin{eqnarray*} f(x) = f_ 0(x)~ ~ \text{if}~ ~ ~ xβ€ 0 \\ f(x) = f_ 1(x)~ ~ \text{if}~ ~ ~ xβ₯ 1 \end{eqnarray*}so that the interpolant has \(f'{\gt}0\).
What if \(f_ 1(1)=f_ 0(0)\)?
1