EDB β€” 1HD

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [1HD] In the same hypotheses, we see a "vice versa". Let \(f,πœ‘:A\to {\mathbb {R}}\) be of class \(C^ 2\) in the open set \(A\), and let \(\overline x∈ E_ a\) and \(πœ†βˆˆβ„\) be such that \(βˆ‡ f(\overline x)+πœ† βˆ‡πœ‘(\overline x)=0\); suppose that

    \[ βˆ€ v, vβ‹… βˆ‡ πœ‘(x)=0⟹ vβ‹… H v {\gt} 0 \]

    where

    \[ h(x)=f(x)+πœ†πœ‘(x) \]

    and \(H\) is the Hessian matrix of \(h\) in \(\overline x\). Show that \(\overline x\) is a local minimum point for \(f\) bound to \(E_ a\).

    Solution 1

    [1HF]

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English