- E1
[1QC]Per ogni punto \((x,y)\) del piano con \(x,y{\gt}0\) passa un’unica ellissi \(4 x^ 2 + y^ 2 = a\) (con \(a{\gt}0\)). Descrivete la famiglia di curve che in ogni punto sono ortogonali all’ellisse passante per quel punto. Si veda la figura 12.
Soluzione 1Figure 6 Ellissi (in rosso) e curve a esse ortogonali. [ [1QG]]
EDB — 1QC
View
Italian
English
- E1
[1QC]For each point \((x,y)\) of the plane with \(x,y{\gt}0\) passes a single ellipses \(4 x^ 2 + y^ 2 = a\) (with \(a{\gt}0\)). Describe the family of curves that at each point are orthogonal to the ellipse passing through that point. See figure 12.
Solution 1Figure 6 Ellipses (in red) and curves orthogonal to them. [ [1QG]]
Authors:
"Mennucci , Andrea C. G."
.
Managing blob in: Multiple languages