Exercises
[1T6]Prerequisites:[1MN],[1MK],[1T1].
Let be given \(Cβ β^{nΓ n}\), \(F,A:βββ^{nΓ n}\) continuous, and the solution \(Y(t)\) of the ODE
\[ \frac{d\hskip5.5pt}{d{t}} Y(t) = A(t) Y(t)~ ~ ~ ,~ ~ ~ Y(0)=\mathrm{Id}~ ~ . \]Solve the equation
\[ X'=AX+F~ ~ , X(0)=C~ ~ , \]where \(X:βββ^{nΓ n}\), using \(Y(t)\) as an auxiliary function.
1