EDB β€” 210

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercise 31

[210] Note:exercise 2, written exam 15 January 2014. Let \((a_ n)_{ n β‰₯ 0}\) be a sequence of positive real numbers. Having defined \(s_ n =βˆ‘_{i=0}^ n a_ i \) prove that:

  • the series \(βˆ‘_{n=0}^∞ a_ n\) converges if and only if the series \(βˆ‘_{n=0}^∞ a_{n}/s_ n\) converges;

  • the series \(βˆ‘_{n=0}^∞ a_ n / (s_ n)^ 2\) converges.

Solution 1

[21K]

Download PDF
Authors: Ambrosio, Luigi ; Mantegazza, Carlo ; "Mennucci , Andrea C. G." .
Bibliography
Book index
  • convergence, of a series
Managing blob in: Multiple languages
This content is available in: Italian English