EDB — 239

view in whole PDF view in whole HTML

View

English

E5

[239]Prerequisites:[01R],[(3.171)],[24V].Let \(x,y\) be elements (generic, not necessarily natural numbers), such that

\begin{equation} x⊆ y⊆ S(x) \label{eq:x_ y_ Sx} \end{equation}
6

prove that

\[ x=y∨ y = S(x)\quad ; \]

where the above two are mutually exclusive, and (in the hypothesis ?? above) the second one holds if and only if \(x\in y\); summarizing

\[ \ref{eq:x_ y_ Sx} ⇒ (x=y\iff y ≠ S(x)\iff x∉ y )\quad . \]

Note the analogy with [22H].

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English