EDB — 27H

view in whole PDF view in whole HTML

Vista

Italiano

Nota 44

[27H]Note storiche.

  • La proposizione “\(|A^ 2|=|A|\) vale per ogni insieme infinito” è equivalente all’assioma della scelta. Questo fu dimostrato da Tarski [ 26 ] nel 1928; l’articolo è online e scaricabile e contiene altre sorprendenti equivalenze. Si veda anche [ 24 ] Parte 1 Sezione 7 pagina 140 asserzione CN6.

  • Jan Mycielski [ 21 ] riporta: «Tarski told me the following story. He tried to publish his theorem (stated above) in the Comptes Rendus Acad. Sci. Paris but Fréchet and Lebesgue refused to present it. Fréchet wrote that an implication between two well known propositions is not a new result. Lebesgue wrote that an implication between two false propositions is of no interest. And Tarski said that after this misadventure he never tried to publish in the Comptes Rendus».

    Questo aneddoto ci mostra quanto (prima dei lavori di Godel e Cohen  [ , anche i matematici più importanti non capissero l’importanza dell’assioma della scelta.

Scarica PDF
Bibliografia
  • [27] Alfred Tajtelbaum-Tarski. Sur quelques théorèmes qui équivalent à l’axiome du choix. Fundamenta Mathematicae, 5(1):147–154, 1924.
  • [25] H. Rubin and J.E. Rubin. Equivalents of the Axiom of Choice, II. ISSN. Elsevier Science, 1985. ISBN 9780080887654. URL https://books.google.it/books?id=LSsbBU9FesQC.
  • [22] Jan Mycielski. A system of axioms of set theory for the rationalists. volume 53, pages 206–213, 2006. URL https://www.ams.org/journals/notices/200602/200602FullIssue.pdf.
  • [7] John L. Bell. The Axiom of Choice. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2021 edition, 2021.

Indice analitico
  • cardinalità
Stai gestendo il blob in: Multiple languages
Questo contenuto è disponibile in: Italiano Inglese