Exercises
[065]Prerequisites:[064], [01G]. Given sets \(A_ 1,A_ 2\ldots \) and \(B_ 1,B_ 2\ldots \) , for \(nββ\), say if there is a relation (of equality or containment) between
\begin{eqnarray} \label{eq:liminf_ insiemi_ intersezione} (\liminf _{nββ} A_ n) β© (\liminf _{nββ} B_ n) & \stackrel{?}{=} & \liminf _{nββ} (A_ nβ© B_ n)\quad ,\\ {} \label{eq:liminf_ insiemi_ unione} (\liminf _{nββ} A_ n) βͺ (\liminf _{nββ} B_ n) & \stackrel{?}{=} & \liminf _{nββ} (A_ nβͺ B_ n)\quad . \end{eqnarray}If equality does not hold, show an example. Then use [063] to establish similar rules for \(\limsup _{nββ} A_ n\).
1