EDB β€” 065

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [065]Prerequisites:[064], [01G]. Given sets \(A_ 1,A_ 2\ldots \) and \(B_ 1,B_ 2\ldots \) , for \(nβˆˆβ„•\), say if there is a relation (of equality or containment) between

    \begin{eqnarray} \label{eq:liminf_ insiemi_ intersezione} (\liminf _{nβ†’βˆž} A_ n) ∩ (\liminf _{nβ†’βˆž} B_ n) & \stackrel{?}{=} & \liminf _{nβ†’βˆž} (A_ n∩ B_ n)\quad ,\\ {} \label{eq:liminf_ insiemi_ unione} (\liminf _{nβ†’βˆž} A_ n) βˆͺ (\liminf _{nβ†’βˆž} B_ n) & \stackrel{?}{=} & \liminf _{nβ†’βˆž} (A_ nβˆͺ B_ n)\quad . \end{eqnarray}

    If equality does not hold, show an example. Then use [063] to establish similar rules for \(\limsup _{nβ†’βˆž} A_ n\).

    Solution 1

    [066]

Download PDF
Bibliography
Book index
  • limsup, of sets
  • liminf, of sets
Managing blob in: Multiple languages
This content is available in: Italian English