Exercises
[091] Let \(D,C\) be non-empty sets and \(f:Dβ C\) a function. Let \(I\) a non-empty family of indexes, \(B_ iβ C\) for \(iβ I\). Given \(Bβ C\) remember that the counterimage of \(B\) is
\[ f^{-1}(B){\stackrel{.}{=}}\{ xβ D, f(x) β B\} ~ ~ , \]Given \(Bβ C\) we write \(B^ c=\{ xβ C,xβ B\} \) to denote the complement. Show these counterimage properties.
\begin{align} f^{-1}\bigl(β_{iβ I} B_ i \bigr) & = β_{iβ I} f^{-1}\bigl(B_ i \bigr)\\ f^{-1}\bigl(β_{iβ I} B_ i \bigr) & = β_{iβ I} f^{-1}\bigl(B_ i \bigr)\\ f^{-1}\bigl( B^ c \bigr) & = f^{-1}\bigl(B \bigr)^ c~ ~ . \end{align}