EDB β€” 091

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [091] Let \(D,C\) be non-empty sets and \(f:Dβ†’ C\) a function. Let \(I\) a non-empty family of indexes, \(B_ iβŠ† C\) for \(i∈ I\). Given \(BβŠ† C\) remember that the counterimage of \(B\) is

    \[ f^{-1}(B){\stackrel{.}{=}}\{ x∈ D, f(x) ∈ B\} ~ ~ , \]

    Given \(BβŠ† C\) we write \(B^ c=\{ x∈ C,xβˆ‰ B\} \) to denote the complement. Show these counterimage properties.

    \begin{align} f^{-1}\bigl(⋃_{i∈ I} B_ i \bigr) & = ⋃_{i∈ I} f^{-1}\bigl(B_ i \bigr)\\ f^{-1}\bigl(β‹‚_{i∈ I} B_ i \bigr) & = β‹‚_{i∈ I} f^{-1}\bigl(B_ i \bigr)\\ f^{-1}\bigl( B^ c \bigr) & = f^{-1}\bigl(B \bigr)^ c~ ~ . \end{align}
Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English