EDB β€” 091

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [091] Let D,C be non-empty sets and f:Dβ†’C a function. Let I a non-empty family of indexes, BiβŠ†C for i∈I. Given BβŠ†C remember that the counterimage of B is

    fβˆ’1(B)=.{x∈D,f(x)∈B}  ,

    Given BβŠ†C we write Bc={x∈C,xβˆ‰B} to denote the complement. Show these counterimage properties.

    (1)fβˆ’1(⋃i∈IBi)=⋃i∈Ifβˆ’1(Bi)(2)fβˆ’1(β‹‚i∈IBi)=β‹‚i∈Ifβˆ’1(Bi)(3)fβˆ’1(Bc)=fβˆ’1(B)c  .
Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English