EDB β€” 092

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [092] Let \(D,C\) be non-empty sets and \(f:Dβ†’ C\) a function. Let \(I\) be a non-empty family of indexes, \(A_ iβŠ† D\), for \(i∈ I\). Given \(AβŠ† D\) remember that the image of \(A\) is the subset \(f(A)\) of \(D\) given by

    \[ f(A){\stackrel{.}{=}}\{ f(x), x ∈ A\} ~ ~ . \]

    Show these image properties.

    \begin{eqnarray} f\bigl(⋃_{i∈ I} A_ i \bigr) & =& ⋃_{i∈ I} f\bigl(A_ i \bigr) \nonumber \\ f\bigl(β‹‚_{i∈ I} A_ i \bigr) & βŠ† & β‹‚_{i∈ I} f\bigl(A_ i \bigr) \nonumber ~ ~ . \end{eqnarray}

    Show that the function is injective if and only if

    \begin{equation} f\bigl( A_ 1∩ A_ 2 \bigr) = f\bigl(A_ 1 \bigr) ∩ f\bigl(A_ 2 \bigr) \end{equation}
    146

    is an equality for every choice of \(A_ 1,A_ 2βŠ† D\).

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English