Exercises
[092] Let \(D,C\) be non-empty sets and \(f:Dβ C\) a function. Let \(I\) be a non-empty family of indexes, \(A_ iβ D\), for \(iβ I\). Given \(Aβ D\) remember that the image of \(A\) is the subset \(f(A)\) of \(D\) given by
\[ f(A){\stackrel{.}{=}}\{ f(x), x β A\} ~ ~ . \]Show these image properties.
\begin{eqnarray} f\bigl(β_{iβ I} A_ i \bigr) & =& β_{iβ I} f\bigl(A_ i \bigr) \nonumber \\ f\bigl(β_{iβ I} A_ i \bigr) & β & β_{iβ I} f\bigl(A_ i \bigr) \nonumber ~ ~ . \end{eqnarray}Show that the function is injective if and only if
\begin{equation} f\bigl( A_ 1β© A_ 2 \bigr) = f\bigl(A_ 1 \bigr) β© f\bigl(A_ 2 \bigr) \end{equation}146is an equality for every choice of \(A_ 1,A_ 2β D\).