EDB β€” 0B6

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0B6] (Solved on 2022-11-24) Let \(a_ n\) be a real-valued sequence, for \(n∈ I\) a set of indexes; let \(r{\gt}0,tβˆˆβ„,𝜌{\lt}0\); show that

    \[ \sup _{n∈ I}(a_ n+t)=t+\sup _{n∈ I}a_ n~ ~ ,~ ~ \sup _{n∈ I}(r a_ n)=r \sup _{n∈ I}a_ n~ ~ ,~ ~ \sup _{n∈ I}(𝜌 a_ n)= 𝜌 \inf _{n∈ I}a_ n~ ~ . \]

    Solution 1

    [22W]

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English