Exercises
[0CF]Difficulty:*.More generally, given \(p(x)=a_ 0+a_ 1x+\cdots + a_ n x^ n\), \(pββ[z]\) \(q(x)=b_ 0+b_ 1x+\cdots + b_ m x^ m\), \(qββ[z]\), and given \(πΌ,π½\) such that \(p(πΌ)=0=q(π½)\), construct a polynomial \(rβ β[z]\) such that \(r(πΌ+π½)=0\).
(Hint. use the theory of the resultant [ 35 ] ).
So if \(πΌ,π½\) are algebraic then \(πΌ+π½\) is algebraic.
1