EDB — 0D0

view in whole PDF view in whole HTML

Vista

Italiano

Esercizi

  1. [0D0]Prerequisiti:[0CX],[0CS].Sia di nuovo \(a_{n,m}\) una successione reale a due indici \(n,m∈ℕ\); supponiamo che, per ogni \(n\), esista finito il \(\lim _{m→ ∞} a_{n,m}=b_ n\) uniformemente in \(n\), e che esista finito il \(\lim _ n b_ n\). Si può concludere che esistono i limiti \(\lim _{n→ ∞}a_{n,m}\) per ogni fissato \(m\)? Sapete scrivere un’uguaglianza come in eqn. [(7.3)] in cui però a destra si usino i limiti superiori o inferiori di \(a_{n,m}\) per \(n→ ∞\), al posto dei limiti \(\lim _{n→ ∞}a_{n,m}\)?

    Soluzione 1

    [0D1]

Scarica PDF
Bibliografia
Indice analitico
  • convergenza, di serie
Stai gestendo il blob in: Multiple languages
Questo contenuto è disponibile in: Italiano Inglese