Exercises
[0F0]Note:Exam of 9th APr 2011.Let \((a_ n)\) be a sequence of real numbers (not necessarily positive) such that the series \(β_{n=1}^β a_ n\) converges to \(aβ{\mathbb {R}}\); let \(b_ n=\frac{a_ 1+\cdots +a_ n}{n}\); show that if the series \(β_{n=1}^β b_ n\) converges then \(a=0\).