EDB β€” 0F0

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0F0]Note:Exam of 9th APr 2011.Let \((a_ n)\) be a sequence of real numbers (not necessarily positive) such that the series \(βˆ‘_{n=1}^∞ a_ n\) converges to \(a∈{\mathbb {R}}\); let \(b_ n=\frac{a_ 1+\cdots +a_ n}{n}\); show that if the series \(βˆ‘_{n=1}^∞ b_ n\) converges then \(a=0\).

Download PDF
Bibliography
Book index
  • convergence, of a series
Managing blob in: Multiple languages
This content is available in: Italian English