- E10
[0M3]Prerequisites:[0J1],[0KX],[0KZ]. Let now \(X_ 1,\ldots X_ n\) be topological spaces with topologies, respectively, \(π_ 1,\ldots π_ n\); let \(X=β_{i=1}^ nX_ i\) be the Cartesian product. We apply the above results to define the product topology \(π\): this can be described in two equivalent ways.
Union of all Cartesian products of open setsΒ 1
\begin{align*} π=\Big\{ β_{jβ J} β_{i=1}^ n A_{i,j} : A_{1,j}βπ_ 1,\ldots A_{n,j}βπ_ nβ jβ J , J~ \\ \text{arbitrarily chosen sets of indexes} \Big\} ~ ~ . \end{align*}\(π\) is the smallest topology that contains Cartesian products of open sets.
1
EDB β 0M3
View
English
Authors:
"Mennucci , Andrea C. G."
.
Bibliography
Book index
- [3] L. Ambrosio, C. Mantegazza, and F. Ricci. Complementi di matematica. Scuola Normale Superiore, 2021. ISBN 9788876426933. URL https://books.google.it/books?id=1QR0zgEACAAJ.
Book index
- space, topological
- topological space
- base, (topology)
- Cartesian product
- product topology
- topology, product β
Managing blob in: Multiple languages