- E103
[0MP]Difficoltà:*.Restringiamo la topologia descritta nell’esempio precedente all’insieme \(Y=[0,1]^{[0,1]}\) (cioè, restringiamo \(ℝ\) a \([0,1]\), e poniamo \(Ω=[0,1]\)). Trovate una successione \((f_ n)⊂ Y\) che non ammetta una sottosuccessione convergente.
1Ricordiamo la definizione [0J3]: uno spazio \(X\) è “compatto per ricoprimenti” se, per ogni \((A_ i)_{i∈ I}\) famiglia di aperti tale che \(⋃_{i∈ I}A_ i= X\), esiste una sotto famiglia finita \(J⊂ I\) tale che \(⋃_{i∈ J}A_ i= X\). Sappiate che, per un importante teorema dovuto a Tychonoff, questo spazio \(Y\) è “compatto per ricoprimenti”. Questo esercizio vi mostra invece che \(Y\) non è “compatto per successioni”.
EDB — 0MP
Vista
Italiano
Autori:
"Mennucci , Andrea C. G."
.
Bibliografia
Indice analitico
Indice analitico
- topologico, spazio
- spazio, topologico
- sottosuccessione, convergente
- convergenza, puntuale
- teorema, di Tychonoff
- Tychonoff
Stai gestendo il blob in: Multiple languages