2
[0YJ]If the limit exists
\begin{equation} \lim _{πβ 0+}\frac{\log N(π)}{\log (1/π)}\label{eq:dim_ K} \end{equation}
3
we will say that this limit is the Minkowski dimension \(\dim (K)\) of \(K\).
[0YJ]If the limit exists
we will say that this limit is the Minkowski dimension \(\dim (K)\) of \(K\).