EDB β€” 0Z3

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0Z3] We indicate an operating policy that can be used in the following exercises.

    • If there is a descending sequence \(𝜌_ jβ†’ 0\) and \(h_ j\) positive such that \(h_ j\) balls of radious \(𝜌_ j\) are enough to cover \(K\), then

      \begin{equation} \limsup _{πœŒβ†’ 0+}\frac{\log N(𝜌)}{\log (1/𝜌)} ≀ \limsup _{jβ†’ ∞}\frac{\log h_{j+1}}{\log (1/𝜌_ j)}~ ~ .\label{eq:dimens_ sup_ per_ copertura} \end{equation}
      4

    • If, on the other hand, there is a descending sequence \(r_ jβ†’ 0\), and \(C_ nβŠ† K\) finite families of points that are at least distant \(r_ j\) from each other, i.e. for which

      \begin{equation} βˆ€ x,y∈ C_ n,xβ‰  y β‡’ d(x,y)β‰₯ r_ j~ ,\label{eq:punti_ sparpagliati} \end{equation}
      5

      thenΒ 

      \begin{equation} \liminf _{πœŒβ†’ 0+}\frac{\log N(𝜌)}{\log (1/𝜌)} β‰₯ \liminf _{jβ†’ ∞}\frac{\log l_ j}{\log (1/r_{j+1})}~ ~ . \label{eq:dimens_ inf_ per_ sparpagl} \end{equation}
      6

      where \(l_ j=|C_ j|\) is the cardinality of \(C_ j\). Note that the points of \(x∈ C_ j\) are centers of disjoint balls \(B(x,r_ j/2)\), therefore \(l_ j≀ P(r_ j/2)\), as defined in [0YS].

    In particular, if

    \begin{equation} \limsup _{jβ†’ ∞}\frac{\log h_{j+1}}{\log (1/𝜌_{j})}=\liminf _{jβ†’ ∞}\frac{\log l_{j}}{\log (1/r_{j+1})}=𝛽\label{eq:dimens_ per_ sup_ inf} \end{equation}
    7

    then the set \(K\) has dimension \(𝛽\).

    [ [0Z4]]

    Solution 1

    [0Z5]

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English