EDB β€” 110

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Definition 23

[110]If \(M_ 1\), \(M_ 2\) are vector spaces with norms \(\| \| _{M_ 1}\) and respectively \(\| \| _{M_ 2}\), then \(πœ‘\) is an isometry when

\begin{equation} βˆ€ x,y∈ M_ 1, \| x-y\| _{M_ 1}=\| πœ‘(x)-πœ‘(y)\| _{M_ 2} \label{eq:isometria_ su_ normati} \end{equation}
24

(rewriting the definition of distance using norms).

Download PDF
Bibliography
Book index
  • normed vector space
Managing blob in: Multiple languages
This content is available in: Italian English