EDB β€” 13T

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

E10

[13T]Topics:oscillation.

Given any \(f:X→ℝ\), we define oscillation function \({\operatorname {osc}}(f)\)

\[ {\operatorname {osc}}(f) (x) {\stackrel{.}{=}}f^{*}(x)-f_{*}(x) \]
  1. Note that \({\operatorname {osc}}(f)β‰₯ 0\), and that \(f\) is continuous in \(x\) if and only if \({\operatorname {osc}}(f)(x)=0\).

  2. Show that \({\operatorname {osc}}(f)\) is upper semicontinuous.

  3. If \((X,d)\) is a metric space, note that

    \[ {\operatorname {osc}}(f) (x) {\stackrel{.}{=}}\lim _{\varepsilon β†’ 0+} \sup \{ |f(y) - f(z)| ~ ,~ d(x,y){\lt}\varepsilon ,d(x,z){\lt}\varepsilon \} \quad . \]

Solution 1

[13V]

Download PDF
Bibliography
Book index
  • lower semicontinuous
  • upper semicontinuous
  • oscillation
Managing blob in: Multiple languages
This content is available in: Italian English