- E10
[13T]Topics:oscillation.
Given any \(f:Xββ\), we define oscillation function \({\operatorname {osc}}(f)\)
\[ {\operatorname {osc}}(f) (x) {\stackrel{.}{=}}f^{*}(x)-f_{*}(x) \]Note that \({\operatorname {osc}}(f)β₯ 0\), and that \(f\) is continuous in \(x\) if and only if \({\operatorname {osc}}(f)(x)=0\).
Show that \({\operatorname {osc}}(f)\) is upper semicontinuous.
If \((X,d)\) is a metric space, note that
\[ {\operatorname {osc}}(f) (x) {\stackrel{.}{=}}\lim _{\varepsilon β 0+} \sup \{ |f(y) - f(z)| ~ ,~ d(x,y){\lt}\varepsilon ,d(x,z){\lt}\varepsilon \} \quad . \]
1
EDB β 13T
View
English
Authors:
"Mennucci , Andrea C. G."
.
Managing blob in: Multiple languages