Exercises
[1DM]Prerequisites:[1DJ],[09N].Show that the function
\begin{equation} π(x) = \begin{cases} e^{-1/x} & \text{if}~ ~ x>0 \\ 0 & \text{if}~ ~ xβ€ 0 \end{cases} \label{eq:Cinfty_ non_ analitica} \end{equation}20is of class \(C^β\), and for \(x{\gt}0\)
\begin{align*} π^{(n)}(x)= e^{-1/x} β_{m=1}^ n \binom {n-1}{m-1} \frac{n! }{ m! } \frac{(-1)^{m+n}}{x^{m+n}}\quad , \\ \quad \binom {n-1}{m-1}= \frac{(n-1)!}{(n-m)!(m-1)!}\quad . \end{align*}whereas \(π^{(n)}(x)=0\) for each \(nββ,xβ€ 0\).
Proceed similarly to
\begin{equation} π(x) = \begin{cases} e^{-1/|x|} & \text{if}~ ~ ~ xβ 0 \\ 0 & \text{if}~ ~ x= 0 \end{cases} \label{eq:Cinfty_ non_ analitica_ bis} \end{equation}23again \(πβ C^β\) and \(π^{(n)}(0)=0\) for each \(nββ\); but in this case \(π(x)=0\iff x=0\).
1