Exercises
[1DT] What can you put in place of "???" so that the function
\[ g(x) = \begin{cases} ??? & \text{if}~ ~ ~ 0{\lt}x{\lt}1~ , \\ {} 1 & \text{if}~ ~ xβ₯ 1 ~ ,\\ {} 0 & \text{if}~ ~ xβ€ 0~ . \end{cases} \]is \(C^β\)?
More generally, how can two \(C^β\) functions be connected, so that the whole function is \(C^β\)? Given \(f_ 0,f_ 1β C^β\), show 1 that there is a function \(fβ C^β\) that satisfies
\begin{eqnarray*} f(x) = f_ 0(x)& \text{if}~ ~ ~ xβ€ 0 \quad ,\\ {} f(x) = f_ 1(x)& \text{if}~ ~ ~ xβ₯ 1 \quad . \end{eqnarray*}1