- E42
[1FR] Prerequisiti:[1BR].Note:Da un idea nel libro di Apostol [ 5 ] , Capitolo 7.3.Scrivere lo sviluppo di Taylor (intorno a \(x_ 0 = 0\)) per \(-\log (1 - x)\) integrando
\begin{equation} \frac{1}{(1 - x)} = 1 + x + x^ 2 + \ldots + x^{n-1} + \frac{x^{n}}{(1 - x)}\label{eq:32jb} \end{equation}43e confrontare il “resto”
\begin{equation} ∫_ 0^ x\frac{t^{n}}{(1 - t)}\, {\mathbb {d}}t\label{eq:resto_ log_ strano_ int} \end{equation}44così ottenuto con il “resto integrale” di \(f(x) = -\log (1 - x)\) (come presentato in esercizio [1BR]).
Procedere similmente per \(\arctan (x)\) integrando
\begin{equation} 1/(1 + x^ 2 ) = 1 - x^ 2 + x^ 4 + \ldots + (-1)^{n} x^{2n} - (-1)^ n x^{2n+2} /(1 + x^ 2 )\quad .\label{eq:2e98a} \end{equation}451
EDB — 1FR
Vista
Italiano
Autori:
"Mennucci , Andrea C. G."
.
Stai gestendo il blob in: Multiple languages