EDB — 1FR

view in whole PDF view in whole HTML

View

English

E42

[1FR] Prerequisites:[1BR].Note:From an idea in Apostol’s book [ 5 ] , Chapter 7.3.Write Taylor’s polynomial (around \(x_ 0 = 0\)) for \(-\log (1 - x)\), integrating

\begin{equation} \frac{1}{(1 - x)} = 1 + x + x^ 2 + \ldots + x^{n-1} + \frac{x^{n}}{(1 - x)}\label{eq:32jb} \end{equation}
43

and compare the ”remainder”

\begin{equation} ∫_ 0^ x\frac{t^{n}}{(1 - t)}\, {\mathbb {d}}t\label{eq:resto_ log_ strano_ int} \end{equation}
44

thus obtained with with the "integral remainder" of \(f(x) = -\log (1 - x)\) (as presented in Exercise [1BR]).

Proceed similarly for \(\arctan (x)\), integrating

\begin{equation} 1/(1 + x^ 2 ) = 1 - x^ 2 + x^ 4 + \ldots + (-1)^{n} x^{2n} - (-1)^ n x^{2n+2} /(1 + x^ 2 )\quad .\label{eq:2e98a} \end{equation}
45

Solution 1

[1FS]

Download PDF
Bibliography
Book index
  • Taylor's theorem, with integral remainder
  • Taylor's theorem
Managing blob in: Multiple languages
This content is available in: Italian English