EDB — 1BR

view in whole PDF view in whole HTML

View

English

E20

[1BR] Prerequisites:[1BP].Note:See also Apostol [ 5 ] .

Fix \(a∈ℝ\), and \(I\) open interval with \(a∈ I\); assuming that \(f:I→ℝ\) is if class \(C^{n+1}\), prove Taylor’s formula with integral remainder

\[ f(x) = ∑_{k=0}^ n \frac{f^{(k)}(a)}{k!} (x-a)^ k + \frac 1{n!} ∫_ a^ x(x-t)^ nf^{(n+1)}(t) \, {\mathbb {d}}t\quad . \]

Solution 1

[1BS]

Download PDF
Bibliography
Book index
  • Taylor's theorem, with integral remainder
  • function, Riemann integrable ---
  • Riemann integral
Managing blob in: Multiple languages
This content is available in: Italian English