- E20
[1BR] Prerequisites:[1BP].Note:See also Apostol [ 5 ] .
Fix \(a∈ℝ\), and \(I\) open interval with \(a∈ I\); assuming that \(f:I→ℝ\) is if class \(C^{n+1}\), prove Taylor’s formula with integral remainder
\[ f(x) = ∑_{k=0}^ n \frac{f^{(k)}(a)}{k!} (x-a)^ k + \frac 1{n!} ∫_ a^ x(x-t)^ nf^{(n+1)}(t) \, {\mathbb {d}}t\quad . \]1
EDB — 1BR
View
English
Authors:
"Mennucci , Andrea C. G."
.
Bibliography
Book index
Book index
- Taylor's theorem, with integral remainder
- function, Riemann integrable ---
- Riemann integral
Managing blob in: Multiple languages