EDB β€” 1H8

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

E69

[1H8] Prerequisites:[1F6],[1H1]. Let \(f,πœ‘\) be class \(C^ 1\) in the open set \(A\), and let \(\overline x\) be a local minimum point for \(f\) bound to \(E_ a\) (so \(πœ‘(x)=a\)). Show that \(πœ†βˆˆβ„\) exists such that \(βˆ‡ f(\overline x)+πœ† βˆ‡πœ‘(\overline x)=0\); this \(πœ†\) is called the Lagrange multiplier.

Solution 1

[1H9]

Download PDF
Bibliography
Book index
  • Lagrange multiplier
  • Lagrange
Managing blob in: Multiple languages
This content is available in: Italian English