EDB — 1MD

view in whole PDF view in whole HTML

View

English

Exercises

  1. [1MD]We define the functions hyperbolic cosine 1

    \[ \cosh y =\frac{e^{y}+e^{-y}} 2 \]

    and hyperbolic sine

    \[ \sinh y =\frac{e^{y}-e^{-y}}{2}. \]
    • Verify that

      \[ (\cosh x) ^ 2 - (\sinh x) ^ 2 =1 \]

      (which justifies the name of ”hyperbolic”).

    • Prove the validity of these power series expansion

      \[ \cosh (x) = 1+\frac 1 2 x^ 2+ \frac 1{4!} x^ 4+\frac 1{6!} x^ 6+ \ldots \]
      \[ \sinh (x) = x+\frac 1{3!} x^ 3+ \frac 1{5!} x^ 5+\frac 1{7!} x^ 7+ \ldots \]
    • Check that

      \[ \cosh '=\sinh ~ ~ ,~ ~ \sinh '=\cosh \]
    • Check the formulas

      \[ \sinh (x+y) = \cosh x \sinh y + \cosh y \sinh x ~ ~ \]
      \[ \cosh (x+y) = \cosh x \cosh y + \sinh y \sinh x ~ . \]
Download PDF
Bibliography
Book index
  • power series
Managing blob in: Multiple languages
This content is available in: Italian English