EDB — 1MG

view in whole PDF view in whole HTML

View

Italian

Esercizi

  1. [1MG] Prerequisiti:Sezione . [2CM],[118], [11J], [11F], [1M5].

    Dotiamo lo spazio delle matrici \(ℂ^{n× n}\) di una delle norme viste in Sezione [2CN].

    • Mostrate che la serie \(∑_{k=0}^∞{A^ k}/{k!}\) converge.

    • Mostrate che

      \begin{equation} \exp (A)=\lim _{N→∞}\Big({\mathbb {I}}+A/N\Big)^ N \label{eq:exp(A)=lim(I+A/N)N} \end{equation}
      19

      dove \({\mathbb {I}}\) è la matrice identità in \(ℝ^{n× n}\); e che la convergenza è uniforme in ogni intorno compatto di \(A\). (Sugg. fate buon uso del simile risultato [1M5].)

    Soluzione 1

    [1MH]

Download PDF
Bibliography
Book index
  • matrice identità
  • serie, di potenze
Managing blob in: Multiple languages
This content is available in: Italian English