5
[1XG] Prove 1 by induction the following assertions:
\(β_{k=1}^ nk=\frac{n(n+1)} 2\);
\(β_{k=1}^ nk^ 2=\frac{n(n+1)(2n+1)} 6\);
\(β_{k=1}^ nk^ 3=\frac{n^ 2(n+1)^ 2} 4\);
\(β_{k=1}^ n\frac{1}{4k^ 2-1}=\frac{n}{2n+1}\);
\(β_{k=1}^ n\frac{k}{2^ k}=2-\frac{n+2}{2^ n}\);
\(n!β₯ 2^{n-1}\);
If \(x{\gt}-1\) is a real number and \(nβ β\) then \((1+x)^ nβ₯ 1+nx\) (Bernoulli inequality).
1