- E14
[1ZT] Suppose that in a ring \(A\) there is a total ordering \(β€\) such that for every \(x, y, z β A\) you have \(x β€ y β x + z β€ y + z\); then show that these are equivalent
\(x β€ y \, β§\, 0 β€ z \quad β\quad x Β· z β€ y Β· z\);
\(xβ₯ 0β§ y β₯ 0 \quad β\quad x Β· y β₯ 0 \) .
EDB β 1ZT
View
English
Authors:
"Mennucci , Andrea C. G."
.
Managing blob in: Multiple languages