- E15
[1ZV]Prerequisites:[29D],[1ZS],[1ZT]. Prove 1 than in an ordered ring \(F\):
for each \(x ∈ F, x^ 2 ≥ 0\) , in particular \(1 = 1^ 2{\gt}0\);
\(x {\gt} 0 ⇒ -x {\lt} 0\)
\(y {\gt} x ⇒ -y {\lt} -x \) ;
\(x ≤ y \land a ≤ 0 ⇒ a · x ≥ a · y\) ;
\(x \ge a \land y\ge b ⇒ x + y ≥ a + b\) ;
\(x {\gt} a \land y\ge b ⇒ x + y {\gt} a + b\) ;
\(x \ge a \ge 0 \land y\ge b\ge 0 ⇒ x · y ≥ a · b\) ;
Prove than in an ordered field \(F\):
\(x {\gt} a {\gt} 0 \land y{\gt} b\ge 0 ⇒ x · y {\gt} a · b\) ;
\(x {\gt} 0 ⇒ x ^{−1} {\gt} 0\) ;
\(y {\gt} x {\gt} 0 ⇒ x ^{−1} {\gt} y ^{−1} {\gt} 0\) ;
\(x · y {\gt} 0\) if and only if \(x\) and \(y\) agree on sign (i.e. either both > 0 or both < 0);
1
EDB — 1ZV
View
English
Authors:
"Mennucci , Andrea C. G."
.
Bibliography
Book index
- [3] L. Ambrosio, C. Mantegazza, and F. Ricci. Complementi di matematica. Scuola Normale Superiore, 2021. ISBN 9788876426933. URL https://books.google.it/books?id=1QR0zgEACAAJ.
- [26] Walter Rudin. Principles of Mathematical Analysis. McGraw–Hill, New York, 3rd edition, 1964.
Book index
- ordered ring
- ring, ordered —
Managing blob in: Multiple languages