EDB — 1ZZ

view in whole PDF view in whole HTML

View

English

Exercise 8

[1ZZ]Consider the ring of matrixes \(ℝ^{2× 2}\) let’s define

\[ A={\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} }\quad ,\quad B={\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} }\quad , \]

then check that

\[ AB={\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} } \quad ,\quad BA={\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} }\quad ; \]

you conclude that the ring of matrixes is not commutative.

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English