22
[202] Let \(F\) be a field; given \(πΌβ 0\) and \(hββ\) consider the recursive definition of exponentiation \(πΌ^ h\) defined from \(πΌ^ 0=1\) and \(πΌ^{(n+1)}= πΌ^ n β πΌ\); then prove that \(πΌ^{h+k}=πΌ^ hπΌ^ k\) and \((πΌ^ h)^ k=πΌ^{(hk)}\) for every \(k,hββ\).