EDB β€” 219

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Theorem 19

[219] Let \(𝛼=\limsup _{nβ†’βˆž}\sqrt[n]{|a_ n|}\) then

  • if \(𝛼{\lt}1\) the series \(βˆ‘_{n=1}^∞ a_ n\) converges absolutely;

  • if \(𝛼=1\) nothing can be concluded;

  • if \(𝛼{\gt}1\) the series \(βˆ‘_{n=1}^∞ a_ n\) does not converge, and also \(βˆ‘_{n=1}^∞ |a_ n|\) diverges.

Proof β–Ό

[21B]

Download PDF
Bibliography
Book index
  • test, root ---
  • root test
  • convergence, of a series
Managing blob in: Multiple languages
This content is available in: Italian English