EDB — 21W

view in whole PDF view in whole HTML

View

Italian

Definizione 137

[21W]Dati due insiemi ordinati \((X,≤_ X)\) e \((Y,≤_ Y)\), con \(X,Y\) disgiunti, la concatenazione di \(X\) con \(Y\) si ottiene definendo \(Z=X∪ Y\) e dotandolo dell’ordinamento \(≤_ Z\) dato da:

  • se \(z_ 1,z_ 2∈ X\) allora \(z_ 1≤_ Z z_ 2\) se e solo se \(z_ 1≤_ X z_ 2\);

  • se \(z_ 1,z_ 2∈ Y\) allora \(z_ 1≤_ Z z_ 2\) se e solo se \(z_ 1≤_ Y z_ 2\);

  • se \(z_ 1∈ X\) e \(z_ 2∈ Y\) allora si ha sempre \(z_ 1≤_ Z z_ 2\).

Questa operazione è alle volte indicata con la notazione \(Z = X⧺ Y\).

Se gli insiemi non sono disgiunti, possiamo sostituirli con insiemi disgiunti definiti da \(\tilde X=\{ 0\} × X\) e \(\tilde Y=\{ 1\} × Y\), poi potremo "ricopiare" i rispettivi ordinamenti, e infine potremo eseguire la concatenazione di \(\tilde X\) e \(\tilde Y\).

Download PDF
Bibliography
Book index
  • concatenazione
  • \(⧺ \)
  • \(⧺ \) , see concatenazione
  • ordinamento
Managing blob in: Multiple languages
This content is available in: Italian English