EDB β€” 0BP

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercise 45

[0BP] Let \(A_ 1,A_ 2\ldots \) be sets , for \(nβˆˆβ„•\); let \(X=⋃_ n A_ n\). We define the characteristic function \({\mathbb 1}_ A: X→ℝ\) as

\[ {\mathbb 1}_ A(x)= \begin{cases} 1 & \text{if}~ x∈ A\\ {} 0 & \text{if}~ xβˆ‰ A \end{cases} ~ . \]

We will use the definitions \(\limsup _{n} A_ n\) and \(\liminf _{n} A_ n\) seen in eqn.Β [(3.286)] and [(3.287)]. You have

\begin{eqnarray} \label{eq:limsup_ insiemi_ 1} {\mathbb 1}_{(\limsup _{n} A_ n)} & =& \limsup _{n} {\mathbb 1}_{A_ n} ~ ~ ,\\ {} \label{eq:liminf_ insiemi_ 1} {\mathbb 1}_{(\liminf _{n} A_ n)} & =& \liminf _{n} {\mathbb 1}_{A_ n} ~ ~ . \end{eqnarray}

Download PDF
Bibliography
Book index
  • characteristic, function
  • function, characteristic
  • limsup, of sets
  • liminf, of sets
  • limsup, of function
  • liminf, of function
  • real numbers
Managing blob in: Multiple languages
This content is available in: Italian English