6.5 Upper and lower limits[29P]

From the previous definition we move on to the definitions of “limit superior” \(\limsup \) and “limit inferior” \(\liminf \). The idea is so expressed.

Definition 192

[20F] Let \(I⊂ ℝ\), \(x_ 0∈ \overline{ℝ}\) accumulation point of \(I\), \(f:I→ ℝ\) function. We define

\begin{align} \limsup _{x→ x_ 0} f(x) = \inf _{U \text{neighbourhood of} x_ 0}~ \sup _{x∈ U∩ I} f(x) \label{eq:limsup_ R}\\ \liminf _{x→ x_ 0} f(x) = \sup _{U \text{neighbourhood of} x_ 0}~ \inf _{x∈ U∩ I} f(x) \label{eq:liminf_ R} \end{align}

where the first ”inf” (resp. the ”sup”) is performed with respect to the family of all the deleted neighbourhoods \(U\) of \(x_ 0\); and the neighbourhoods will be right or left neighbourhoods if the limit is from right or left.

Remark 195

[20G](Solved on 2022-11-29) Using the properties of \(\inf ,\sup \), we obtain for example these characterizations

\[ \limsup _{x→ x_ 0} f(x) ≤ l \iff ∀ z{\gt}l, \text{ eventually for } x→ x_ 0, f(x){\lt} z ~ ~ ; \]
\[ \limsup _{x→ x_ 0} f(x) ≥ l \iff ∀ z{\lt}l, \text{frequently for } x→ x_ 0, f(x){\gt} z ~ ~ ; \]

and so on. (In this simplified writing, we assume that \(x∈ I\)).

In particular, defining \(l=\limsup _{x→ x_ 0} f(x) \), the previous formulas characterize exactly the "limsup".
Corollary 196

[20N]You have \(𝛼=\limsup _{x→ x_ 0} f(x)\) if and only if

\[ ∀ z{\gt}𝛼, \text{ eventually for } x→ x_ 0, f(x){\lt} z ~ ~ ; \]
\[ ∀ z{\lt}𝛼, \text{ frequently for } x→ x_ 0, f(x){\gt} z ~ ~ . \]

We make them explicit further in what follows. (It is recommended to try to rewrite autonomously some items, by way of exercise).
Proposition 197

[0BK] In the case \(x_ 0∈ℝ\) and \(l∈ℝ\), we divide the definition into two conditions: 1

\(\limsup _{x→ x_ 0} f(x) ≤ l\)

\(\limsup _{x→ x_ 0} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I⇒f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I, f(x){\gt}l-\varepsilon \)

\(\limsup _{x→ x_ 0^+} f(x) ≤ l\)

\(\limsup _{x→ x_ 0^+} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I⇒f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\gt}l-\varepsilon \)

\(\limsup _{x→ x_ 0^-} f(x) ≤ l\)

\(\limsup _{x→ x_ 0^-} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I⇒f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\gt}l-\varepsilon \)

\(\liminf _{x→ x_ 0} f(x) ≥ l\)

\(\liminf _{x→ x_ 0} f(x) ≤ l\)

\(∀ \varepsilon {\gt}0, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I⇒f(x){\gt}l-\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I, f(x){\lt}l+\varepsilon \)

\(\liminf _{x→ x_ 0^+} f(x) ≥ l\)

\(\liminf _{x→ x_ 0^+} f(x) ≤ l\)

\(∀ \varepsilon {\gt}0, ∃ 𝛿 {\gt}0,∀ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I⇒f(x){\gt}l-\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\lt}l+\varepsilon \)

\(\liminf _{x→ x_ 0^-} f(x) ≥ l\)

\(\liminf _{x→ x_ 0^-} f(x) ≤ l\)

\(∀ \varepsilon {\gt}0, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I⇒f(x){\gt}l-\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\lt}l+\varepsilon \)

In the case \(x_ 0∈ℝ\) and \(l=±∞\):

\(\limsup _{x→ x_ 0} f(x) =∞\)

\(∀ z, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I, f(x){\gt}z \)

\(\limsup _{x→ x_ 0^+} f(x) =∞\)

\(∀ z, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\gt}z \)

\(\limsup _{x→ x_ 0^-} f(x) =∞\)

\(∀ z, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\gt}z \)

\(\limsup _{x→ x_ 0} f(x) =-∞\)

\(∀ z, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I⇒f(x){\lt}z \)

\(\limsup _{x→ x_ 0^+} f(x) =-∞\)

\(∀ z, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I⇒f(x){\lt}z \)

\(\limsup _{x→ x_ 0^-} f(x) =-∞\)

\(∀ z, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I⇒f(x){\lt}z \)

\(\liminf _{x→ x_ 0} f(x) =∞\)

\(∀ z, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I⇒f(x){\gt}z \)

\(\liminf _{x→ x_ 0^+} f(x) =∞\)

\(∀ z, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I⇒f(x){\gt}z \)

\(\liminf _{x→ x_ 0^-} f(x) =∞\)

\(∀ z, ∃ 𝛿 {\gt}0, ∀ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I⇒f(x){\gt}z \)

\(\liminf _{x→ x_ 0} f(x) =-∞\)

\(∀ z, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x≠ x_ 0, x∈ I, f(x){\lt}z \)

\(\liminf _{x→ x_ 0^+} f(x) =-∞\)

\(∀ z, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\gt} x_ 0, x∈ I, f(x){\lt}z \)

\(\liminf _{x→ x_ 0^-} f(x) =-∞\)

\(∀ z, ∀ 𝛿 {\gt}0, ∃ x, |x-x_ 0|{\lt}𝛿, x{\lt} x_ 0, x∈ I, f(x){\lt}z \)

In the case \(x_ 0=±∞\) and \(l=±∞\):

\(\limsup _{x→ ∞} f(x) =∞\)

\(∀ z, ∀ y,∃ x,x{\gt}y, x∈ I, f(x){\gt}z \)

\(\limsup _{x→ -∞} f(x) =∞\)

\(∀ z, ∀ y,∃ x,x{\lt}y, x∈ I, f(x){\gt}z \)

\(\limsup _{x→ ∞} f(x) =-∞\)

\(∀ z, ∃ y,∀ x,x{\gt}y, x∈ I⇒f(x){\lt}z \)

\(\limsup _{x→ -∞} f(x) =-∞\)

\(∀ z, ∃ y,∀ x,x{\lt}y, x∈ I⇒f(x){\lt}z \)

\(\liminf _{x→ ∞} f(x) =∞\)

\(∀ z, ∃ y,∀ x,x{\gt}y, x∈ I⇒f(x){\gt}z \)

\(\liminf _{x→ -∞} f(x) =∞\)

\(∀ z, ∃ y,∀ x,x{\lt}y, x∈ I⇒f(x){\gt}z \)

\(\liminf _{x→ ∞} f(x) =-∞\)

\(∀ z, ∀ y,∃ x,x{\gt}y, x∈ I, f(x){\lt}z \)

\(\liminf _{x→ -∞} f(x) =-∞\)

\(∀ z, ∀ y,∃ x,x{\lt}y, x∈ I, f(x){\lt}z \)

In the case \(x_ 0=±∞\) and \(l∈ℝ\):

\(\limsup _{x→ ∞} f(x) ≤ l\)

\(\limsup _{x→ ∞} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∃ y, ∀ x, x{\gt}y, x∈ I⇒f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ y, ∃ x, x{\gt}y, x∈ I, f(x){\gt}l-\varepsilon \)

\(\limsup _{x→ -∞} f(x) ≤ l\)

\(\limsup _{x→ -∞} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∃ y, ∀ x, x{\lt}y, x∈ I⇒f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∀ y, ∃ x, x{\lt}y, x∈ I, f(x){\gt}l-\varepsilon \)

\(\liminf _{x→ ∞} f(x) ≤ l\)

\(\liminf _{x→ ∞} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∀ y, ∃ x, x{\gt}y, x∈ I, f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∃ y, ∀ x, x{\gt}y, x∈ I⇒f(x){\gt}l-\varepsilon \)

\(\liminf _{x→ -∞} f(x) ≤ l\)

\(\liminf _{x→ -∞} f(x) ≥ l\)

\(∀ \varepsilon {\gt}0, ∀ y, ∃ x, x{\lt}y, x∈ I, f(x){\lt}l+\varepsilon \)

\(∀ \varepsilon {\gt}0, ∃ y, ∀ x, x{\lt}y, x∈ I⇒f(x){\gt}l-\varepsilon \)

Remark 198

[0BM]Note that

\[ \liminf _{x→ x_ 0} f(x) =∞ ⟺ \lim _{x→ x_ 0} f(x) =∞ \]

and

\[ \limsup _{x→ x_ 0} f(x) =-∞ ⟺ \lim _{x→ x_ 0} f(x) =-∞ \]
Remark 199

[0BN]Note that if you replace \(f↦ -f\), \(l↦ -l\), you pass from the definitions of \(\limsup \) to those of \(\liminf \) (and vice versa). Another symmetry is achieved by switching \(x_ 0 → -x_ 0\) and right and left neighbourhoods/limits.

E199

[0BP] Let \(A_ 1,A_ 2\ldots \) be sets , for \(n∈ℕ\); let \(X=⋃_ n A_ n\). We define the characteristic function \({\mathbb 1}_ A: X→ℝ\) as

\[ {\mathbb 1}_ A(x)= \begin{cases} 1 & \text{if}~ x∈ A\\ {} 0 & \text{if}~ x∉ A \end{cases} ~ . \]

We will use the definitions \(\limsup _{n} A_ n\) and \(\liminf _{n} A_ n\) seen in eqn. ?? and ??. You have

\begin{eqnarray} \label{eq:limsup_ insiemi_ 1} {\mathbb 1}_{(\limsup _{n} A_ n)} & =& \limsup _{n} {\mathbb 1}_{A_ n} ~ ~ ,\\ {} \label{eq:liminf_ insiemi_ 1} {\mathbb 1}_{(\liminf _{n} A_ n)} & =& \liminf _{n} {\mathbb 1}_{A_ n} ~ ~ . \end{eqnarray}

E199

[0BQ] We fix a real valued sequence \(a_ n\). Now consider the definition of 192 setting \(I=ℕ\) and \(x_ 0=∞\), so that neighborhoods of \(x_ 0\) are sets containing \([n,∞)=\{ m∈ℕ:m≥ n\} \); with these assumptions show that you have

\begin{align} \limsup _{n→ ∞} a_ n =& \inf _ n \sup _{m≥ n} a_ n= \lim _{n→∞} \sup _{m≥ n} a_ n~ ~ , \nonumber \\ \liminf _{n→ ∞} a_ n =& \sup _ n \inf _{m≥ n} a_ n= \lim _{n→∞} \inf _{m≥ n} a_ n~ . \label{eq:def_ limsup_ liminf_ succ}, \end{align}
E199

[29R]Prerequisites:192,175,53,237,3.Difficulty:*.(Proposed on 2022-11-24)

Let \(I⊂ ℝ\), \(x_ 0∈ \overline{ℝ}\) accumulation point of \(I\), \(f:I→ ℝ\) function. As in 175 \({\mathcal F}\) all the neighbourhoods of \(x_ 0\) with associated the filtering ordering

\[ U,V∈ {{\mathcal F}}~ ~ , U≤ V \iff U⊇ V\quad . \]

Let

\[ s,i : {\mathcal F}→ℝ~ ~ ,~ ~ s(U) = \sup _{x∈ U∩ I} f(x)~ ~ ,~ ~ i(U) = \inf _{x∈ U∩ I} f(x) \]

note that these are monotonic functions, and show that 2

\begin{align} \limsup _{x→ x_ 0} f(x) {\stackrel{.}{=}}\inf _{U∈ {\mathcal F}} s(U) = \lim _{U∈ {\mathcal F}} s(U) \label{eq:limsup_ R_ F} \\ \liminf _{x→ x_ 0} f(x) {\stackrel{.}{=}}\sup _{U ∈ {\mathcal F}} i(U) = \lim _{U ∈ {\mathcal F}} i(U) \label{eq:liminf_ R_ F} \end{align}

where the limits are defined in 237.

E199

[29S]Prerequisites:3.(Solved on 2022-11-24)

Let \(I⊂ ℝ\), \(x_ 0∈ \overline{ℝ}\) accumulation point of \(I\), and \(f,g:I→ ℝ\) functions. Prove that

\[ \limsup _{x→ x_ 0} \big( f(x) + g(x) \big) \le \limsup _{x→ x_ 0} f(x) + \limsup _{x→ x_ 0} g(x)\quad . \]
E199

[29T]Let \(I⊂ ℝ\), \(x_ 0∈ \overline{ℝ}\) accumulation point of \(I\), \(f:I→ ℝ\) function. Let \(r{\gt}0,t∈ℝ,𝜌{\lt}0\); show that

\begin{align*} \limsup _{x→ x_ 0} (f(x) +t) = t+\limsup _{x→ x_ 0}f(x)~ ~ ,~ ~ \limsup _{x→ x_ 0}(r f(x)) = r \limsup _{x→ x_ 0} f(x)~ ~ ,~ ~ \\ \limsup _{x→ x_ 0}(𝜌 f(x)) = 𝜌 \liminf _{x→ x_ 0} f(x)~ ~ . \end{align*}

Other exercises on limits of sequences can be found in Sec. 7.1.

  1. In the following tables all commas ”,” after the last quantifier should be interpreted as conjunctions ”\(∧\)”, but were written as ”,” for lighten the notation.
  2. cf ??, ??.