17.3 Partial and total derivatives, differentials[2D3]
- E396
[1FX]Check that the following partial derivatives exist, and compute them:
\begin{align*} \frac{\partial ~ }{\partial {x}} {\Big( 4xy + 3x^ 2 y -z y^ 2 \Big)}~ ~ & ,~ ~ \frac{\partial ~ }{\partial {y}} \Big( 4xy + 3x^ 2 y -z y^ 2 \Big)\\ \frac{\partial ~ }{\partial {x}} { \frac{ze^{x+|y|}}{1+x^ 2|y|} }~ ~ & ,~ ~ \frac{\partial ~ }{\partial {z}} \frac{ze^{x+|y|}}{1+x^ 2|y|} \end{align*}Hidden solution: [UNACCESSIBLE UUID ’1FY’]
- E396
[1FZ] Prerequisites:Riemann integral,2.Let \(I⊆ ℝ\) open interval with \(0∈ I\). Given \(f=f(x,y):I×[0,1]→ℝ\) continuous, and such that also \(\frac{∂ }{∂ x} f\) exists and is continuous, set
\[ g(x)=∫_ 0^ 1 f(x,y) \, {\mathbb {d}}y\quad , \]show that \(g\) is of class \(C^ 1\), and that
\[ g'(x)=∫_ 0^ 1 \frac{\partial ~ }{\partial {x}} f(x,y) \, {\mathbb {d}}y~ . \]Hidden solution: [UNACCESSIBLE UUID ’1G0’][UNACCESSIBLE UUID ’1G1’]
- E396
[1G2] Prerequisites:Riemann integral, 6, 6, 2.Let
\[ h(t) = ∫_{a(t)}^{b(t)} f(t,z) \, {\mathbb {d}}z \]where \(a,b,f\) are \(C^ 1\) class functions: show that \(h\) is class \(C^ 1\) and calculate the derivative.
Hidden solution: [UNACCESSIBLE UUID ’1G3’]
- E396
[1G4]Are the following functions differentiable in \((0,0)\)?
\begin{align*} f_ 1(x,y)= \begin{cases} x+y & \text{if}~ x{\gt}0\\ x+ye^{-x^ 2} & \text{if}~ x≤ 0 \end{cases}& ,& f_ 2(x,y) = \sqrt{x^ 2+y^ 2} \\ f_ 3(x,y) = \left( \arctan (y+1)\right)^{x+1} & ,& f_ 4(x,y) =\max \{ x^ 2, y^ 2\} ~ ~ . \end{align*}Hidden solution: [UNACCESSIBLE UUID ’1G5’]
- E396
[1G6]Prerequisites:1.Let \(f:ℝ^ k→ℝ\) be of class \(C^∞\). Recall that, by Schwarz’s theorem, permutiation of the order of partial derivatives does not change the result. Let \(N(n,k)\) be the number of partial (potentially different) derivatives of order \(n\): show that \(N(n,k)=\binom {n+k-1}{k-1}\) (which is a polynomial with integer coefficients in the variable \(n\), of order \(k-1\)). Hidden solution: [UNACCESSIBLE UUID ’1G7’]
- E396
[1G8] Let \(W⊆ ℝ^ n\) be an open nonempty set, fix \(\overline x∈ W\). Let then \(𝜓:W→ℝ\) of class \(C^ 2\). Let \(∇𝜓(\overline x)\) be the row vector of coordinates \(\frac{\partial ~ }{\partial {x_ k}} 𝜓(\overline x)\) (which is the gradient of \(𝜓\), a special case of the ”Jacobian matrix”); we abbreviate it to \(D=∇𝜓(\overline x)\) for simplicity; let \(H\) be the Hessian matrix of components \(H_{h,k}= \frac{\partial {}^ 2}{\partial {x_ k x_ h}}𝜓 (\overline x) \); show the validity of Taylor’s formula at the second order
\[ 𝜓 (\overline x+v) = 𝜓 (\overline x) + D v + \frac 1 2 v^ t H v + o(|v|^ 2) \](note that the product \(D v\) is a matrix \(1× 1\) that we identify with a real number, and similarly for \(v^ t H v\)).
\(\overline x\) is a stationary point for \(𝜓\) if and only if \(\overline y\) is stationary point for \(\tilde𝜓\),
and in this case the Hessians of \(𝜓\) and \(\tilde𝜓\) are similar (i.e. the matrices are equal, up to coordinate changes).
Hidden solution: [UNACCESSIBLE UUID ’1GC’]