EDB β€” 0BQ

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercise 47

[0BQ] We fix a real valued sequence \(a_ n\). Now consider the definition of [20F] setting \(I=β„•\) and \(x_ 0=∞\), so that neighborhoods of \(x_ 0\) are sets containing \([n,∞)=\{ mβˆˆβ„•:mβ‰₯ n\} \); with these assumptions show that you have

\begin{align} \limsup _{nβ†’ ∞} a_ n =& \inf _ n \sup _{mβ‰₯ n} a_ n= \lim _{nβ†’βˆž} \sup _{mβ‰₯ n} a_ n~ ~ , \nonumber \\ \liminf _{nβ†’ ∞} a_ n =& \sup _ n \inf _{mβ‰₯ n} a_ n= \lim _{nβ†’βˆž} \inf _{mβ‰₯ n} a_ n~ . \label{eq:def_ limsup_ liminf_ succ}, \end{align}

Download PDF
Bibliography
Book index
  • limsup, of sequence
  • liminf, of sequence
  • limsup, of function
  • liminf, of function
  • real numbers
Managing blob in: Multiple languages
This content is available in: Italian English