ColDoc
Home
(current)
😑 Login
Search
EDB
— 29T
↑
←
→
↓
View
Tools
View
English
E54
[29T]
Let
I
⊂
ℝ
,
x
0
∈
ℝ
―
accumulation point of
I
,
f
:
I
→
ℝ
function. Let
r
>
0
,
t
∈
ℝ
,
𝜌
<
0
; show that
lim sup
x
→
x
0
(
f
(
x
)
+
t
)
=
t
+
lim sup
x
→
x
0
f
(
x
)
,
lim sup
x
→
x
0
(
r
f
(
x
)
)
=
r
lim sup
x
→
x
0
f
(
x
)
,
lim sup
x
→
x
0
(
𝜌
f
(
x
)
)
=
𝜌
lim inf
x
→
x
0
f
(
x
)
.
Download PDF
Authors:
"Mennucci , Andrea C. G."
.
Bibliography
Book index
limsup, of function
liminf, of function
real numbers
Managing blob in: Multiple languages
This content is available in:
Italian
English