EDB β€” 0D6

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

E12

[0D6]Topics:Euler-Mascheroni constant.Prerequisites:[211].

Show that the limit

𝛾=limnβ†’βˆž(βˆ‘k=1n1kβˆ’log⁑(n)).

exists and is finite. This 𝛾 is called Costante di Eulero - Mascheroni. It can be defined in many different ways (see the previous link) including

𝛾=∫1∞(1⌊xβŒ‹βˆ’1x)dx

where the parentheses βŒŠβ‹…βŒ‹ indicate the floor function ⌊xβŒ‹=.max{nβˆˆβ„€:n≀x}. In the image 1 the constant 𝛾 is the blue area.

\includegraphics[width=0.4\textwidth ]{UUID/0/D/7/blob_zxx}
Figure 1 Representation of Euler-Mascheroni constant

Image by William Demchick, Creative Commons Attribution 3.0 Unported License, taken from wikipedia.

Solution 1

[0D8]

Download PDF
Bibliography
Book index
  • convergence, of a series
  • Euler-Mascheroni constant
  • constant, Euler-Mascheroni
  • floor
  • integer part
Managing blob in: Multiple languages
This content is available in: Italian English