EDB β€” 0D6

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

E12

[0D6]Topics:Euler-Mascheroni constant.Prerequisites:[211].

Show that the limit

\[ 𝛾 = \lim _{n β†’ ∞ } \left( βˆ‘_{k=1}^ n \frac 1{k} - \log ( n) \right)\quad . \]

exists and is finite. This \(𝛾\) is called Costante di Eulero - Mascheroni. It can be defined in many different ways (see the previous link) including

\[ 𝛾 = ∫_ 1^∞\left(\frac{1}{⌊ xβŒ‹}-\frac{1}{x}\right)\, {\mathbb {d}}x \]

where the parentheses \(⌊ β‹… βŒ‹\) indicate the floor function \(⌊ x βŒ‹{\stackrel{.}{=}}\max \{ nβˆˆβ„€ :n≀ x\} \). In the image 1 the constant \(𝛾\) is the blue area.

\includegraphics[width=0.4\textwidth ]{UUID/0/D/7/blob_zxx}
Figure 1 Representation of Euler-Mascheroni constant

Image by William Demchick, Creative Commons Attribution 3.0 Unported License, taken from wikipedia.

Solution 1

[0D8]

Download PDF
Bibliography
Book index
  • convergence, of a series
  • Euler-Mascheroni constant
  • constant, Euler-Mascheroni
  • floor
  • integer part
Managing blob in: Multiple languages
This content is available in: Italian English