EDB β€” 0DD

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0DD]Note:Exercise 1 from the written exam 9 April 2011.Let \((a_ n)\) be a sequence of real numbers, with \(a_ nβ‰₯ 0\).

    1. Show that if \( βˆ‘_{n=1}^∞ a_ n\) converges then also

      \[ βˆ‘_{n=1}^∞ a_ n^ 2 \quad \hbox{e} \quad βˆ‘_{n=1}^∞ \left(a_ n βˆ‘_{m=n+1}^∞ a_ m\right) \]

      converge.

    2. Assuming moreover that \(βˆ‘_{n=1}^∞ a_ n\) is convergent, let’s define

      \[ a=βˆ‘_{n=1}^∞ a_ n ~ ~ ,~ ~ b=βˆ‘_{n=1}^∞ \left(a_ n βˆ‘_{m=n+1}^∞ a_ m \right)~ ~ ,~ ~ c=βˆ‘_{n=1}^∞ a_ n^ 2 \]

      then show that \(a^ 2=2b+c\).

Download PDF
Bibliography
Book index
  • convergence, of a series
Managing blob in: Multiple languages
This content is available in: Italian English